Chemistry Letters 1996 1097 ## Convenient Synthesis of 1-Fluoroalkyl-2-hydro[60]fullerene Using Fluoroalkyl Halide with Tributyltin Hydride under Radical Conditions Masato Yoshida,* Daiki Suzuki, and Masahiko Iyoda* Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03 (Received August 29, 1996) A convenient method for the preparation of fluoroalkyl-modified C_{60} using fluoroalkyl halides with Bu_3SnH under radical conditions has been developed; 1-fluoroalkyl-2-hydro-[60]fullerenes at 6,6-junction ($C_{60}(R_F)H:R_F=CF_2CO_2Et,\,n-C_6F_{13},\,CF_2Br,\,n-C_{12}F_{25},\,$ and ($CF_2)_6I$) were synthesized effectively. Recently, the chemical modifications of [60] fullerene (C₆₀) with organic functional groups have attracted much attention because of the interesting properties and the potential utility of these molecules. The introduction of fluoroalkyl groups into organic molecules is known to bring about dramatic enhancement or improvement of the properties of the parent molecules.² Thus, we have been interested in the modifications of C₆₀ with fluoroalkyl groups. Although the addition of an alkyl group to C₆₀ using lithium or Grignard reagents has been reported,^{3,4} the applicability of these methods to fluoroalkyl analogues is very limited due to the thermal instability of the corresponding lithium and Grignard reagents, which undergo α - or β -elimination of the fluoride ion. On the other hand, fluoroalkyl radical species are thermally stable, generated relatively easy, and used for the synthesis of various organofluorine compounds.⁵ Accordingly, it is very useful to investigate the fluoroalkylation of C₆₀ with a fluoroalkyl radical. In our previous paper, we reported the formation of fluoroalkylated C₆₀ by the reaction with the diacyl peroxide containing fluoroalkyl groups ((R_FCO₂)₂);⁶ the reaction was initiated by single-electron transfer from C₆₀ to the peroxide to give fluoroalkyl radical. Although the reaction proceeded well under mild conditions, the method is only applicable to the introduction of the limited fluoroalkyl groups, because only a few types of diacyl peroxides are available in literatures: (n- $C_nF_{2n+1}CO_2$)₂ (n = 1-7), (CF₂ClCO₂)₂ and so on.⁷ Herein, we now wish to report a novel synthesis of C₆₀ derivatives possessing various types of fluoroalkyl groups such as CF_2CO_2Et , n- C_6F_{13} , CF_2Br , n- $C_{12}F_{25}$, and $(CF_2)_6I$ using the corresponding fluoroalkyl halides with Bu₃SnH under radical conditions. The method is expected to be versatile and practical, because various types of fluoroalkyl halides are commercially available and easy to handle. A benzene solution of BrCF₂CO₂Et (495 mg, 2.4 mmol), C₆₀ (144 mg, 0.20 mmol), and Bu₃SnH (292 mg, 1.0 mmol) was refluxed under nitrogen for 30 h. The products were separated by gel-permeation chromatography (JAI model LC-908 liquid chromatograph equipped with JAIGEL-1H-40 and 2H-40 columns) using toluene as eluent. As a product, 30 mg of 1a (eq. 1) was obtained, and 75 mg of C₆₀ was recovered: the yield of 1a based on consumed C₆₀ is 37%. The structure of the product 1a was determined by 13 C-NMR, 1 H-NMR, 19 F-NMR, and FAB-MS. 8 The 1 H-NMR spectrum of 1a shows a singlet at 6 H 6.96, which is characteristic of the hydrogen directly attached to the C₆₀ skeleton. 9 Two sp 3 carbons assignable to the C-H and the C-R_F carbon of the C₆₀ skeleton are observed at δ_C 55.01 and 69.01 (triplet for C-F coupling), respectively. Further, the ¹³C-NMR spectrum shows 29 sp² carbon signals for the C₆₀ skeleton (including a pair of coincident peaks); this indicates the *Cs* symmetry in **1a**. The symmetry is also supported by the ¹⁹F-NMR spectrum, in which signal for CF₂ was observed as a singlet at δ_F -30.1. Thus, we propose the 1,2-adduct of fluoroalkyl and hydrogen at 6,6-junction shown in eq. 1. $$C_{60} \qquad \begin{array}{c} \text{Bu}_3\text{SnH, BrCF}_2\text{CO}_2\text{Et} \\ \text{benzene, reflux} \end{array} \qquad \begin{array}{c} \text{CF}_2\text{CO}_2\text{Et} \\ \text{H} \end{array} \tag{1}$$ A radical chain reaction should be involved for the formation of ${\bf 1a}$ (Scheme 1). There are mainly two reaction paths for the CF₂CO₂Et radical: hydrogen abstraction from Bu₃SnH to give HCF₂CO₂Et and radical addition to C₆₀. The desired reaction proceeds with the attack of the CF₂CO₂Et radical to C₆₀ to give fullerene radical. Since C₆₀ is known to be a very good radical-trapping reagent, the attack of the CF₂CO₂Et radical to C₆₀ occurs effectively. The hydrogen abstraction from Bu₃SnH by the R_FC₆₀ radical generates ${\bf 1a}$ and new Bu₃Sn radical, which enters a new cycle. The addition of the R_F radical to C₆₀ has been well investigated mainly by means of ESR spectroscopy. However, little is known about its application to synthetic chemistry. 6,13,14 In this work, the effective production of ${\bf 1a}$ was achieved by the addition of Bu₃SnH to the reaction system as a hydrogen source. BrCF₂CO₂Et $$\xrightarrow{Bu_3Sn \bullet}$$ •CF₂CO₂Et $\xrightarrow{Bu_3SnBr}$ •CF₂CO₂Et $\xrightarrow{Bu_3SnH}$ HCF₂CO₂Et + Bu₃Sn • •CF₂CO₂Et $\xrightarrow{Bu_3SnH}$ EtO(CO)CF₂C₆₀ • $\xrightarrow{Bu_3SnH}$ 1a Scheme 1. On the other hand, no C_{60} derivatives containing $\textit{n-}C_6F_{13}$ were obtained on the reaction with $\textit{n-}C_6F_{13}I$ in the presence of Bu₃SnH under similar conditions. The addition of a catalytic amount of AIBN (0.1 eq. to C_{60}) realized the formation of the adduct $1b.^{15,16}$ Probably, the radical chain reaction was not initiated effectively without AIBN. Similarly, on the reaction with CF_2Br_2 , $\textit{n-}C_{12}F_{25}I$, and $I(CF_2)_6I$, 1c-1e were obtained. Typical examples for the reaction are summarized in Table 1. The spectral data for 1c-1e are consistent with the proposed structure. 1098 Chemistry Letters 1996 Table 1. Introduction of various fluoroalkyl groups into C₆₀ **b**: n-C₆F₁₃ **c**: CF₂Br **d**: n-C₁₂F₂₅ **e**: (CF₂)₆I | R _F X/ eq ^a | Bu_3SnH / eq^a | Yield / %b | (recovered C_{60} / %) | |-----------------------------------|--------------------|-----------------|--------------------------| | $n-C_6F_{13}I$ (1 | 12) 5 | 31 | (64) | | CF_2Br_2 (| 20) 14 | 26 | (57) | | $n-C_{12}F_{25}I$ (| (12) 14 | 26 | (67) | | $I(CF_2)_6I$ | (6) 15 | 41 ^c | (61) | $^{^{}a}$ Based on C_{60} . The fluoroalkyl groups such as CF_2Br , $(CF_2)_6I$, and CF_2CO_2Et to be introduced by this method are expected to be used for further elaboration. In addition, the hydrogen attached to the C_{60} carbon is known to be very acidic, and consequently the hydrogen of 1 might be convertible to other functional groups under weak basic conditions via the R_FC_{60} anion.¹⁷ Thus, 1 has high potential as a precursor for the synthesis of various types of fluoroalkyl-modified C_{60} . ## References and Notes - H. Schwarz, Angew. Chem., Int. Ed. Engl., 31, 292 (1992); F. Wudl, Acc. Chem. Res., 25, 157 (1992); A. Hirsh, Angew. Chem., Int. Ed. Engl., 32, 1138 (1993); R. Taylor and D. R. M. Walton, Nature, 32, 1138 (1993); F. Diedrich, L. Isaacs, and D. Philp, Chem. Soc. Rev., 1994, 243; A. Hirsch, Synthesis, 1995, 895; M. Iyoda and M. Yoshida, J. Synth. Org. Chem. Jpn., 53, 756 (1995). - 2 J. F. Liebmann, A. Greenberg, and W. J. Dolbier, Jr., "Fluorine Containing Molecules, Structures, Reactivity, Synthesis and Applications," VCH, New York (1988). - 3 A. Hirsch, T. Grösser, A. Skiebe, and A. Soi, *Chem. Ber.*, **126**, 1061 (1993). - 4 A. Hirsch, A. Soi, and H. R. Karfunkel, Angew. Chem., Int. Ed. Engl., 31, 766 (1992); H. Nagashima, H. Terasaki, E. Kimura, K. Nagashima, and K. Itoh, J. Org. Chem., 59, 1246 (1994); K. Komatsu, Y. Murata, N. Takimoto, S. Mori, N. Sugita, T. S. M. Wan, J. Org. Chem., 59, 6101 (1994). - 5 M. Yoshida, N. Kamigata, H. Sawada, and M. Nakayama, J. Fluorine Chem., 49, 1 (1990); K. Uneyama, J. Synth. Org. Chem., Jpn., 49, 612 (1991). - 6 M. Yoshida, Y. Morinaga, M. Iyoda, K. Kikuchi, I. Ikemoto, and Y. Achiba, *Tetrahedron Lett.*, 34, 7629 (1993). - 7 C. Zhao, R. Zhou, H. Pan, X. Jin, Y. Qu, C. Wu, and X. - Jiang, J. Org. Chem., **47**, 2009 (1982); M. Yoshida, Y. Morinaga, and M. Iyoda, J. Fluorine Chem., **68**, 33 (1994). - P. J. Fagan, P. J. Krusic, D. H. Evans, S. A. Lerke, and E. Johnston, J. Am. Chem. Soc., 114, 9697 (1992). - 10 The radical addition of Bu_3SnH to C_{60} in benzene under reflux has been reported: lit. 3. - C. N. McEwen, R. G. Mckay, and B. S. Larsen, J. Am. Chem. Soc., 114, 4412 (1992); J. R. Morton, K. F. Preston, P. J. Krusic, S. A. Hill, E. Wasserman, J. Am. Chem. Soc., 114, 5454 (1992); J. R. Morton, K. F. Preston, P. J. Krusic, and E. Wassserman, J. Chem. Soc., Perkin Trans. 2, 1992, 1425; P. J. Krusic, D. C. Roe, E. Johnston, J. R. Morton, K. F. Preston, J. Phys. Chem., 97, 1736 (1993); J. R. Morton, K. F. Preston, P. J. Krusic, S. A. Hill, and E. Wasserman, J. Phys. Chem., 96, 3576 (1992). - J. R. Morton and K. F. Preston, J. Phys. Chem., 98, 4993 (1994); J. R. Morton, F. Negri, K. F. Preston, and G. Ruel, J. Phys. Chem., 99, 10114 (1995); J. R. Morton, F. Negri, K. F. Preston, and G. Ruel, J. Chem. Soc., Perkin Trans. 2, 1995, 2141. - 13 M. Yoshida, A. Morishima, Y. Morinaga, and M. Iyoda, *Tetrahedron Lett.*, **35**, 9045 (1994). - 14 P. J. Fagan, P. J. Krusic, C. N. McEwen, J. Lazav, D. H. Parker, N. Herron, and E. Wasserman, *Science*, 262, 404 (1993). - 15 Selected spectral data for 1b: ^{1}H -NMR (400 MHz, $C_6D_6:CS_2=1:1$) $\delta=6.61(1H, s)$; ^{13}C -NMR (100 MHz, $C_6D_6:CS_2=1:1$) $\delta=151.00(2C)$, 147.84(1C), 147.48(1C), 146.84(4C), 146.71(2C), 146.64(2C), 146.51(2C), 146.43(2C), 146.29(2C), 145.81(4C), 145.56(4C), 144.94(4C), 144.40(2C), 143.38(2C), 143.03(2C), 142.89(2C), 142.39(6C), 141.94(2C), 141.83(2C), 141.11(2C), 140.82(2C), 139.83(2C), 137.95(2C), 135.57(2C), 68.72(1C, t), 54.85(1C); ^{19}F -NMR (376 MHz, ppm from ex. CF_3CO_2H , $C_6D_6:CS_2=1:1$) $\delta=-5.7$, -32.5, -41.0, -46.2, -47.2, -50.7; FAB-MS (m-nitrobenzyl alcohol) m/z=1040 (M^+), 720. - 16 A small amount of $C_{60}(CMe_2CN)(H)$ was also produced by the reaction of C_{60} with CMe_2CN radical generated from AIBN. - 17 T. Kitagawa, T. Tanaka, Y. Tanaka, K. Takeuchi, and K. Komatsu, J. Org. Chem., 60, 1490 (1995). ^b Isolated yields based on consumed C₆₀. ^c A small amount of C₆₀[(CF₂)₆H](H) was included.